Herniated Cervical Disc – Causes, Symptoms, Treatment

Herniated Cervical Disc (also called bulged, slipped or ruptured) is a fragment of the disc nucleus that is pushed out of the annulus, into the spinal canal through a tear or rupture in the annulus. Discs that become herniated usually are in an early stage of degeneration. The spinal canal has limited space, which is inadequate for the spinal nerve and the displaced herniated disc fragment. Due to this displacement, the disc presses on spinal nerves, often producing pain, which may be severe.

Types Of Herniated Cervical Disc

Doctors categorize slipped disks by severity

  • Disc Degeneration – Chemical changes associated with aging causes discs to weaken, but without a herniation.
  • Bulging disk – With age, the intervertebral disk may lose fluid and become dried out. As this happens, the spongy disk (which is located between the bony parts of the spine and acts as a “shock absorber”) becomes compressed. This may lead to the breakdown of the tough outer ring. This lets the nucleus, or the inside of the ring, to bulge out. This is called a bulging disk.
  • Protrusion –The disk bulges out between the vertebrae, but its outermost layer is still intact.
  • Extrusion – There is a tear in the outermost layer of the spinal disk, causing spinal disk tissue to spill out. But the tissue that has come out is still connected to the disk.
  • Sequestration – Spinal disk tissue has entered the spinal canal and is no longer directly attached to the disk.
  • Ruptured or herniated disk – As the disk continues to break down, or with continued stress on the spine, the inner nucleus pulposus may actually rupture out from the annulus. This is a ruptured, or herniated, disk. The fragments of disc material can then press on the nerve roots located just behind the disk space. This can cause pain, weakness, numbness, or changes in sensation.

Causes Of Herniated Cervical Disc

The differential diagnosis for lumbosacral radiculopathy should include (but is not limited to) the following

Degenerative conditions of the spine (most common causes)

  • Spondylolisthesis – in the degenerative setting, this occurs as a result of a pathologic cascade including intervertebral disc degeneration, ensuing intersegmental instability, and facet joint arthropathy
  • Spinal stenosis – It causes especially in older age in maximum people.
  • Adult isthmic spondylolisthesis – is typically caused by an acquired defect in the par interarticularis
    • Pars defects (i.e. spondylolysis) in adults are most often secondary to repetitive microtrauma.

Trauma (e.g. burst fractures with bony fragment retropulsion)

  • Clinicians should recognize spinal fractures can occur in younger, healthy patient populations secondary to high-energy injuries (e.g. MVA, fall from height) or secondary low energy injuries and spontaneous fractures in the elderly populations, including any patient with osteoporosis
  • Associated hemorrhage from the injury can result in a deteriorating clinical and neurologic exam.

Benign or malignant tumors

  • Metastatic tumors (most common)
  • Primary tumors
  • Ependymoma
  • Schwannoma
  • Neurofibroma
  • Lymphoma
  • Lipomas
  • Paraganglioma
  • Ganglioneuroma
  • Osteoblastoma

Infection

  • Osteodiscitis
  • Osteomyelitis
  • Epidural abscess
  • Fungal infections (e.g. Tuberculosis)
  • Other infections: lyme disease, HIV/AIDS-defining ilnesses, Herpes zoster (HZ)

Vascular conditions

Cauda equina syndrome

  • History – Progressive motor/sensory loss, new urinary retention or incontinence, new fecal incontinence
  • Physical exam – Saddle anesthesia, anal sphincter atony, significant motor deficits of multiple myotomes

Fracture

  • History – Significant trauma (relative to age), Prolonged corticosteroid use, osteoporosis, and age greater than 70 years
  • Physical exam – Contusions, abrasions, tenderness to palpation over spinous processes

Infection

  • History – Spinal procedure within the last 12 months, Intravenous drug use, Immunosuppression, prior lumbar spine surgery
  • Physical exam – Fever, wound in the spinal region, localized pain, and tenderness

Malignancy

  • History – History of metastatic cancer, unexplained weight loss
  • Physical exam – Focal tenderness to palpation in the setting of risk factors

Symptoms Of Herniated Cervical Disc

The primary signs and symptoms of

  • LDH is radicular pain – sensory abnormalities, and weakness in the distribution of one or more lumbosacral nerve roots []. Focal paresis, restricted trunk flexion, and increases in leg pain with straining, coughing, and sneezing are also indicative []. Patients frequently report increased pain when sitting, which is known to increase disc pressure by nearly 40% [].
  • Pain that is relieved with sitting for forwarding flexion – is more consistent with lumbar spinal stenosis (LSS), as the latter motion increases disc pressure by 100–400% and would likely increase pain in isolated LDH []. Rainville et al. recently compared signs of LDH with LSS and found that LSS patients are more likely to have increased medical comorbidities, lower levels of disability and leg pain, abnormal Achilles reflexes, and pain primarily in the posterior knee [].
  • Numbness or tingling  – People who have a herniated disk often have radiating numbness or tingling in the body part served by the affected nerves.
  • Weakness – Muscles served by the affected nerves tend to weaken. This can cause you to stumble, or affect your ability to lift or hold items.
  • Pain in the neck, back, low back, arms, or legs
  • Inability to bend or rotate the neck or back
  • Numbness or tingling in the neck, shoulders, arms, hands, hips, legs, or feet
  • Weakness in the arms or legs
  • Limping when walking
  • Increased pain when coughing, sneezing, reaching, or sitting
  • Inability to stand up straight; being “stuck” in a position, such as stooped forward or leaning to the side
  • Difficulty getting up from a chair
  • Inability to remain in 1 position for a long period of time, such as sitting or standing, due to pain
  • Pain that is worse in the morning
  • This is a sharp, often shooting pain that extends from the buttock down the back of one leg. It is caused by pressure on the spinal nerve.
  • Numbness or a tingling sensation in the leg and/or foot
  • Weakness in the leg and/or foot
  • Loss of bladder or bowel control. This is extremely rare and may indicate a more serious problem called cauda equina syndrome. This condition is caused by the spinal nerve roots being compressed.

Diagnosis of Herniated Cervical Disc

Special Tests

  • Lasègue’s Test
  • Slump Test
  • Muscle Weakness or Paresis
  • Reflexes
  • Hyperextension Test The patient needs to passively mobilize the trunk over the full range of extension, while the knees stay extended. The test indicates that the radiant pain is caused by disc herniation if the pan deteriorates.
  • Manual Testing and Sensory Testing Look for hypoaesthesia, hypoalgesia, tingling, or numbness.

Physical Examination

The clinician should assess the patient’s range of motion (ROM), as this can indicate the severity of pain and degeneration. A thorough neurological examination is necessary to evaluate sensory disturbances, motor weakness, and deep tendon reflex abnormalities. Careful attention should also focus on any sign of spinal cord dysfunction.

Typical findings of solitary nerve lesions due to compression by a herniated disc in the cervical spine

  • C2 Nerve – eye or ear pain, headache. History of rheumatoid arthritis or atlantoaxial instability
  • C3, C4 Nerve – vague neck, and trapezial tenderness and muscle spasms
  • C5 Nerve – neck, shoulder, and scapula pain. Lateral arm paresthesia. Primary motions affected include shoulder abduction and elbow flexion. May also observe weakness with shoulder flexion, external rotation, and forearm supination. Diminished biceps reflex.
  • C6 Nerve – neck, shoulder, and scapula pain. Paresthesia of the lateral forearm, lateral hand, and lateral two digits. Primary motions affected include elbow flexion and wrist extension. May also observe weakness with shoulder abduction, external rotation, and forearm supination and pronation — diminished brachioradialis reflex.
  • C7 Nerve – neck and shoulder pain. Paresthesia of the posterior forearm and third digit. Primary motions affected include elbow extension and wrist flexion. Diminished triceps reflex
  • C8 Nerve – neck and shoulder pain. Paresthesia of the medial forearm, medial hand, and medial two digits. Weakness during finger flexion, handgrip, and thumb extension.
  • T1 Nerve – Neck and shoulder pain. Paresthesia of the medial forearm. A weakness of finger abduction and adduction.

Lab values

  • Erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) – These are inflammatory markers that should be obtained If a chronic inflammatory condition is suspected (rheumatoid arthritis, polymyalgia rheumatic, seronegative spondyloarthropathy). These can also be beneficial if an infectious etiology is suspected.
  • Complete blood count (CBC) with differential – Useful to obtain in instances when infection or malignancy is suspected.

Radiological

Patients with equivocal studies may opt for a discography when conservative measures fail. Electrophysiological studies can be performed to evaluate and elucidate the nerve roots affected by injured cervical disc.

  • X-ray – Plain radiography is an initial and inexpensive method of evaluating the cervical spine for an osseous injury. In chronic disc degeneration, decreased disc height and osteophytes can be seen.  There is a higher incidence of cervical cord injury demonstrated with the use of plain radiographs in the assessment of cervical spine stenosis. The Torg ratio is the sagittal canal/vertebral body ratio measured on cervical spine lateral radiographs. The normal value is 1.0. A ratio of 0.8 and below has been considered indicative of cervical spinal stenosis.
  • MRI – Magnetic resonance imaging is the best modality to assess cord compression and disc herniation. T2 weighted views are preferred. Findings include decreased disc height, reduced signal intensity, and spondylotic osteophytes.
  • CT Scan – This imaging is the most sensitive test to examine the bony structures of the spine. It can also show calcified herniated discs or any insidious process that may result in bony loss or destruction. In patients that are unable to or are otherwise ineligible to undergo an MRI, CT myelography can be used as an alternative to visualize a herniated disc.
  • Electrodiagnostic testing – (Electromyography and nerve conduction studies) can be an option in patients that demonstrate equivocal symptoms or imaging findings as well as to rule out the presence of a peripheral mononeuropathy. The sensitivity of detecting cervical radiculopathy with electrodiagnostic testing ranges from 50% to 71%.

Treatment Herniated Cervical Disc

Patient Education

  • Use of hot or cold packs for comfort and to decreased inflammation
  • Avoidance of inciting activities or prolonged sitting/standing
  • Practicing good, erect posture
  • Engaging in exercises to increase core strength
  • Gentle stretching of the lumbar spine and hamstrings
  • Regular light exercises such as walking, swimming, or aromatherapy
  • Use of proper lifting techniques

Non-Surgical

Conservative Treatments – Acute cervical radiculopathies secondary to a herniated disc are typically managed with non-surgical treatments as the majority of patients (75 to 90%) will improve. Modalities that can be used include:

  • Collar Immobilization – In patients with acute neck pain, a short course (approximately one week) of collar immobilization may be beneficial during the acute inflammatory period.
  • Traction – May be beneficial in reducing the radicular symptoms associated with disc herniations. Theoretically, traction would widen the neuroforamen and relieve the stress placed on the affected nerve, which, in turn, would result in the improvement of symptoms. This therapy involves placing approximately 8 to 12 lbs of traction at an angle of approximately 24 degrees of neck flexion over a period of 15 to 20 minutes.
  • Physical Therapy – Commonly prescribed after a short period of rest and immobilization. Modalities include a range of motion exercises, strengthening exercises, ice, heat, ultrasound, and electrical stimulation therapy. Despite their frequent use, no evidence demonstrates their efficacy over placebo. However, there is no proven harm, and with a possible benefit, their use is recommended in the absence of myelopathy.
  • Cervical Manipulation – There is limited evidence suggesting that cervical manipulation may provide short-term benefits for neck pain and cervicogenic headaches. Complications from manipulation are rare and can include worsening radiculopathy, myelopathy, spinal cord injury, and vertebral artery injury. These complications occur ranging from 5 to 10 per 10 million manipulations.

Medication

  • Non-steroidal anti-inflammatory drugs (NSAIDs) – These painkillers belong to the same group of drugs as acetylsalicylic acid (ASA, the drug in medicines like “Aspirin”). NSAIDs that may be an option for the treatment of sciatica include diclofenacibuprofen, and naproxen. Anti-inflammatory drugs are drugs that reduce inflammation. This includes substances produced by the body itself like cortisone. It also includes artificial substances like ASA – acetylsalicylic acid (or “aspirin”) or ibuprofen –, which relieve pain and reduce fever as well as reducing inflammation.
  • Acetaminophen (paracetamol) – Acetaminophen (paracetamol) is also a painkiller, but it is not an NSAID. It is well tolerated and can be used as an alternative to NSAIDs – especially for people who do not tolerate NSAID painkillers because of things like stomach problems or asthma. But higher doses of acetaminophen can cause liver and kidney damage. The package insert advises adults not to take more than 4 grams (4000 mg) per day. This is the amount in, for example, 8 tablets containing 500 milligrams each. It is not only important to take the right dose, but also to wait long enough between doses.
  • Opioids – Strong painkillers that may only be used under medical supervision. Opioids are available in many different strengths, and some are available in the form of a patch. Morphine, for example, is a very strong drug, while tramadol is a weaker opioid. These drugs may have a number of different side effects, some of which are serious. They range from nausea, vomiting and constipation to dizziness, breathing problems, and blood pressure fluctuation. Taking these drugs for a long time can lead to habitual use and physical dependence.
  • Skeletal Muscle relaxant – If muscle spasms are prominent, the addition of a muscle relaxant may merit consideration for a short period. For example, cyclobenzaprine is an option at a dose of 5 mg taken orally three times daily. Antidepressants (amitriptyline) and anticonvulsants (gabapentin and pregabalin) have been used to treat neuropathic pain, and they can provide a moderate analgesic effect.
  • Steroids – Anti-inflammatory drugs that can be used to treat various diseases systemically. That means that they are taken as tablets or injected. The drug spreads throughout the entire body to soothe inflammation and relieve pain. Steroids may increase the risk of gastric ulcers, osteoporosis, infections, skin problems, glaucoma, and glucose metabolism disorders.
  • Muscle relaxants – Sedatives which also relax the muscles. Like other psychotropic medications, they can cause fatigue and drowsiness, and affect your ability to drive. Muscle relaxants can also affect liver functions and cause gastro-intestinal complications. Drugs from the benzodiazepine group, such as tetrazepam, can lead to dependency if they are taken for longer than two weeks.
  • Nerve Relaxant and Neuropathic Agents – Drugs(pregabalin & gabapentin) or Vitamin B1 B6, B12 and mecobalamin that address neuropathic—or nerve-related pain remover. This includes burning, numbness, and tingling.
  • Anticonvulsants – These medications are typically used to treat epilepsy, but some are approved for treating nerve pain (neuralgia). Their side effects include drowsiness and fatigue. This can affect your ability to drive.
  • Antidepressants – These drugs are usually used for treating depression. Some of them are also approved for the treatment of pain. Possible side effects include nausea, dry mouth, low blood pressure, irregular heartbeat, and fatigue.
  • Topical Medications – These prescription-strength creams, gels, ointments, patches, and sprays help relieve pain and inflammation through the skin.
  • Calcium & vitamin D3 – to improve bone health and healing fracture. As a general rule, men and women age 50 and older should consume 1,200 milligrams of calcium a day, and 600 international units of vitamin D a day.
  • Glucosamine & DiacereinChondroitin sulfate – can be used to tightening the loose tension, cartilage, ligament, and cartilage, ligament regenerate cartilage or inhabit the further degeneration of cartilage, ligament
  • Injections near the spine – Injection therapy uses mostly local anesthetics and/or anti-inflammatory medications like corticosteroids (for example cortisone). These drugs are injected into the area immediately surrounding the affected nerve root. There are different ways of doing this:
    • In lumbar spinal nerve analgesia (LSPA) – the medication is injected directly at the point where the nerve root exits the spinal canal. This has a numbing effect on the nerve root.
    • In lumbar epidural analgesia – the medication is injected into what is known as the epidural space (“epidural injection”). The epidural space surrounds the spinal cord and the spinal fluid in the spinal canal. This is also where the nerve roots are located. During this treatment, the spine is monitored using computer tomography or X-rays to make sure that the injection is placed at exactly the right spot.
    • Interventional Treatments – Spinal steroid injections are a common alternative to surgery. Perineural injections (translaminar and transforaminal epidurals, selective nerve root blocks) are an option with pathological confirmation by MRI. These procedures should take place under radiologic guidance.

Surgical

Brief Surgical Techniques

Total Disc Replacement (TDR) and Anterior Cervical Discectomy and Fusion (ACDF)

  • Surgical exposure of the desired vertebral level is achieved through an anterior cervical incision. Subcutaneous dissection is performed to allow for adequate mobilization to tissue incision. The discectomy is performed with pituitary rongeurs, curette, and a burr drill to remove affected disc.
  • The posterior longitudinal ligament can be left in situ depending on the severity of the herniation. The center of the disc is identified. A keel is made using the burr after which the disc is removed and disc replacement performed. A similar surgical method is used for anterior cervical discectomy and fusion, the difference is the type of implant, which can be an interbody cage with an anterior cervical plate or a standalone cage.

Laminectomy

  • A cervical laminectomy removes the lamina on one or both sides to increase the axial space available for the spinal cord. Clinically indicated for spinal stenosis or cervical disc disease involving more than three levels of disc degeneration with anterior spinal cord compression.
  • Single-level cervical disc herniation is usually managed with the anterior approach. The complications of the posterior approach include instability resulting in kyphosis, recalcitrant myofascial pain, and occipital headaches.

Laminoplasty

  • The kyphotic deformity is a well-known complication of laminectomy. To preserve the posterior wall of the spinal canal while decompressing the spinal canal a Z-plasty technique for the lamina was developed. The variant of the procedure uses a hinged door for the lamina.
  • Laminoplasty is commonly indicated for multilevel spondylotic myelopathy. Nerve root injury is seen in about 11% of the surgeries. This complication is unique to laminoplasty, and the suggested etiology is traction on the nerve root with the posterior migration of the spinal cord.

Interventional Treatments

Spinal steroid injections are a common alternative to surgery.

  • Perineural injections (translaminar and transforaminal epidurals, selective nerve root blocks) are an option with pathological confirmation by MRI. These procedures should take place under radiologic guidance.
  • In the past few years, neuromodulation techniques have been used to a large extent to manage radicular pain secondary to disc herniations.
  • These neuromodulatory techniques consist mainly of Spinal cord stimulation devices and Intrathecal pain pump. For patients who are not candidates for surgical intervention, these devices offer minimally invasive efficacious treatment options.

Complications

Complications from steroid injections are typically mild and range between 3% to 35% of cases. Other, more serious complications can include:

  • Nerve injury
  • Infection
  • Epidural hematoma
  • Epidural abscess
  • Spinal cord infarction
  • Infection
  • Recurrent laryngeal, superior laryngeal, and hypoglossal nerve injuries
  • Esophageal injury
  • Vertebral and carotid injuries
  • Dysphagia
  • Horner syndrome
  • Pseudoarthrosis
  • Adjacent segment degeneration

References

[bg_collapse view=”button-orange” color=”#4a4949″ expand_text=”Show More” collapse_text=”Show Less” ]

[/bg_collapse]

Leave a comment

Your email address will not be published. Required fields are marked *