Colles’ Fracture; Causes, Symptoms, Diagnosis, Treatment

Colles’ fracture is an extra-articular distal radius fracture described by Abraham Colles in 1814. Colles’ fracture is a common fracture presentation in the orthopedic emergency department. It commonly affects the elderly female population. There is a direct relationship between osteoporosis and Colles’ fracture. Colles gave a description of a fracture of the distal radius, that is, within 2.5 cm above the wrist joint line, dorsally angulated and displaced, radially angulated and displaced, impacted and supinated, with or without distal radio-ulnar joint disruption []. Fractures of the distal radius were considered uncomplicated injuries in the past. Initially, Abraham Colles treated these fractures when there was no radiography, aseptic surgery, or anesthesia, and the amount of disability following malunion was accepted. Malunion results in pain, mid-carpal instability, and post-traumatic arthritis [].

Colles’ fracture

Mechanism of Colles’ Fracture

Most of the fractures are caused by a fall on the outstretched hand with the wrist in dorsiflexion. The form and severity of fracture of distal radius as well as the concomitant injury of disco-ligamentary structures of the wrist also depend on the position of the wrist at the moment of hitting the ground. The width of this angle influences the localization of the fracture. Pronation, supination, and abduction determine the direction of the force and the compression of the carpus and different appearances of ligamentary injuries.[]

The radius initially fails in tension on the volar aspect, with the fracture progressing dorsally where bending forces induce compressive stresses, resulting in dorsal comminution. Cancellous impaction of the metaphysis further compromises dorsal stability. Additional shearing forces influence the injury pattern, resulting in articular surface involvement.[]

Types of Colles’ Fracture

Melone classification

The system that comes closest to directing treatment has been devised by Melone. This system breaks distal radius fractures down into 4 components: radial styloid, dorsal medial fragment, volar medial fragment, and radial shaft. The two medial fragments (which together create the lunate fossa) are grouped together as the medial complex.[rx]

Type Description Note
I No displacement of a medial complex

  • No comminution.
Fracture is stable after closed reduction
II Unstable depression fracture of lunate fossa (“die-punch”)

  • Moderate/severe medial complex displacement.
  • Comminution of dorsal and volar cortices.
  • IIA – Irreducible, closed fracture.
  • IIB – Irreducible, closed due to impaction
III Type II fracture plus a ‘spike’ of the radius volarly May impinge on the median nerve
IV Split fracture

  • Severe comminution
  • Rotation of fragments.
Unstable
V Explosion injuries

  • Severe displacement/comminution
Often associated with diaphyseal comminution

Frykman Classification

Though the Frykman classification system has traditionally been used, there is little value in its use because it does not help direct treatment. This system focuses on articular and ulnar involvement. The classification is as follows:[rx]

Radius Fracture Ulna Fracture
Absent Present
  • Extra-articular
I II
  • Intra-articular involving  radiocarpal joint
III IV
  • Intra-articular involving DRUJ (distal radio-ulnar joint)
V VI
  • Intra-articular involving both radiocarpal & DRUJ
VII VIII

Universal Classification

The Universal classification system is descriptive but also does not direct treatment. Universal codes are:[rx]

Type Location Displacement Sub-type
I Extra-articular Undisplaced
II Extra-articular Displaced A: Reducible, stableB: Reducible, unstable

C: Irreducible

III Intra-articular Undisplaced
IV Intra-articular Displaced A: Reducible, stableB: Reducible, unstable

C: Irreducible

D: Complex

AO/OTA Classification

A widely used system that includes 27 subgroups. Three main groups based on fracture joint involvement (A – extra-articular, B – partial articular, C – complete articular). Classification further defined based on level of comminution and direction of displacement. A qualification (Q) modifier can be added to classify associated ulnar injury.[rx]

Fernandez Classification

The simplified system developed in response to AO classification, intended to be based off injury mechanism with more treatment-oriented classifications (treatment suggestions not meant to be used as rigid guidelines but can be used to help decision making on a case-by-case basis)[rx]

Type Description Stability Number of Fragments Associated Lesions (see below) Recommended Treatment
I Bending fracture – metaphysis Stable or unstable 2 main fragments with variable metaphyseal comminution Uncommon Stable -> conservativeUnstable -> percutaneous pinning or external fixation
II Shearing fracture – articular surface Unstable 2, 3, comminuted Less uncommon Open reduction with screw-plate fixation
III Compression fracture – articular surface Stable or unstable 2, 3, 4, comminuted Common
  • Closed
  • Limited arthroscopic release
  • Extensile open reduction
  • Percutaneous pins plus external and internal fixation
  • Bone graft
IV Avulsion fracture, radiocarpal fracture, dislocation Unstable 2 (radial/ulnar styloids), 3, comminuted Frequent(especially ligamentous injury) Closed or open reudction with pin/screw fixation or tension wiring
V Combined fracture (high-energy injury) – Often intra-articular and open Unstable Comminuted Always present Combined treatment

Note: Associated Lesions include carpal ligament injury, nerve injury, tendon damage, and compartment syndrome

Causes of Colles’ Fracture

Colles’ fracture

  • Sudden forceful  fall down
  • Road traffic accident
  • Falls – Falling onto an outstretched hand is one of the most common causes of a broken wrist.
  • Sports injuries – Many wrist fractures occur during contact sports or sports in which you might fall onto an outstretched hand — such as in-line skating or snowboarding.
  • Motor vehicle crashes – Motor vehicle crashes can cause wrist bones to break, sometimes into many pieces, and often require surgical repair.
  • Have osteoporosis, a disease that weakens your bones
  • Eave low muscle mass or poor muscle strength, or lack agility and have poor balance (these conditions make you more likely to fall)
  • Walk or do other activities in snow or on the ice, or do activities that require a lot of forwarding momenta, such as in-line skating and skiing
  • Wave an inadequate intake of calcium or vitamin D
  • Football or soccer, especially on artificial turf
  • Rugby
  • Horseback riding
  • Hockey
  • Skiing
  • Snowboarding
  • In-line skating
  • Jumping on a trampoline

Symptoms of Colles’ Fracture

Common symptoms of a Colles fracture include:

  • Severe pain that might worsen when gripping or squeezing or moving your hand or wrist
  • Swelling
  • Tenderness
  • Bruising
  • Obvious deformity, such as a bent wrist
  • Pain
  • Bruising
  • Tenderness
  • The wrist hanging in a deformed way
  • Pain, especially when flexing the wrist
  • Deformity of the wrist, causing it to look crooked and bent.
  • Your wrist is in great pain.
  • Your wrist, arm, or hand is numb.
  • Your fingers are pale.

Diagnosis of Colles’ Fracture

Diagnosis can be made upon the interpretation of anteroposterior and lateral views alone.[rx]

The classic Colles fracture has the following characteristics:[rx]

  • Transverse fracture of the radius
  • 2.5 cm (0.98 inches) proximal to the radio-carpal joint
  • dorsal displacement and dorsal angulation, together with radial tilt[rx]

Other characteristics[rx][rx]

  • Radial shortening
  • Loss of ulnar inclination≤
  • Radial angulation of the wrist
  • Comminution at the fracture site
  • Associated fracture of the ulnar styloid process in more than 60% of cases.

Differential Diagnosis/ Associated Injuries

  • Scapholunate ligament tear
  • Median nerve injury
  • TFCC (triangular fibrocartilage complex) injury, up to 50% when ulnar styloid fx also present
  • Carpal ligament injury – Scapholunate Instability(most common), lunotriquetral ligament
  • Tendon injury, attritional EPL rupture, usually treated with EIP tendon transfer
  • Compartment syndrome
  • Ulnar styloid fracture
  • DRUJ (Distal Radial Ulnar Joint) Instability
  • Galeazzi Fracture: highly associated with distal 1/3 radial shaft fractures[rx]

Plain radiographs

  • Radiographic imaging is important in diagnosis, classification, treatment and follow-up assessment of these fractures. The routine minimal evaluation for distal radius fractures must include two views-a postero-anterior (PA) view and lateral view.[]
  • The PA view should be obtained with the humerus abducted 90 degrees from the chest wall, so that the elbow is at the same level as the shoulder and flexed 90 degrees.[] The palm is maintained flat against the cassette

Computed Tomography

  • CT may be useful and can give significant information in comparison with that obtained with conventional radiography in the evaluation of complex or occult fractures, distal radial articular surface, distal radio-ulnar joint, ventromedial fracture fragment (as described by Melone),[] assessments of fracture healing as well as post-surgical evaluation.[]
  • CT may be indicated for the confirmation of occult fractures suspected on the basis of physical examination when plain films are normal.

Magnetic Resonance Imaging

  • Although this modality is not the first choice in evaluating acute distal radius fractures, it is a powerful diagnostic tool to assess bony, ligamentous and soft tissue abnormalities associated with these fractures.
  • MRI has proved to be a very important diagnostic tool for delineating perforation of triangular fibrocartilage complex (TFCC),[] perforation of interosseous ligaments of the proximal carpal row, evaluating occult fractures, post-traumatic or avascular necrosis of carpal bones.

Treatment of Colles’ Fracture

Non-Surgical

  • Elevate your wrist – on a pillow or the back of a chair above the level of your heart for the first few days. This will ease the pain and swelling.
  • Ice the wrist – Do this for 15-20 minutes every two to three hours for two to three days. Be careful to keep the splint or cast dry while icing.
  • Take over-the-counter painkillers – Ask your doctor about nonsteroidal anti-inflammatory drugs (NSAIDs), like ibuprofen, naproxen, or aspirin(except for children). They can help with pain and swelling. However, these drugs have side effects, such as an increased risk of bleeding and ulcers. They should be used only occasionally unless your doctor specifically says otherwise, as this may delay healing.
  • Practice stretching and strengthening exercises – of the fingers, elbow, and shoulder if your doctor recommends them.
  • A splint – which you might use for a few days to a week while the swelling goes down; if a splint is used initially, a cast is usually put on about a week later.
  • A cast – which you might need for six to eight weeks or longer, depending on how bad the break is (you might need a second cast if the first one gets too loose after the swelling goes away.)

Medication

Closed Reduction and Casting

  • All fractures characterized by minor comminution, without or with minimal displacements can be considered for closed reduction and cast immobilization. Mainly type I and type IIA Melone’s fracture can be managed conservatively. The fracture should be kept under closed observation to look for any re-displacement.
  • Despite the widespread acceptance of immobilization in a plaster cast, questions remain regarding the optimum position, the duration of immobilization and the need to extend the cast proximal to the elbow. No clear consensus exists as to the best position for immobilizing the wrist in plaster. Sarmiento et al.[] advocated immobilization in a position of supination to decrease the deforming force of the brachioradialis, which may cause loss of reduction.

Pins and Plaster Technique

  • Placement of pins in the metacarpals and forearm was initially advocated by Bohler in 1923, but it gained popularity after the report by Green, who showed good or excellent results in 86% of his patients.[]
  • However, he noted a high incidence of minor or major complications, one-third of which were related to pin site only. Other researchers also noted that one-third of the complications were related to pins and 16% of the patients needed reoperation for complications.[]

Percutaneous Pinning

  • Extra-articular fractures of the distal end of the radius with extensive comminution or the fractures that have no more than two articular fragments, in which anatomical reduction is obtainable, are amenable to percutaneous pinning of the fracture fragments and application of a plaster cast. A single pin placed through the radial styloid as a means of stabilizing the displaced fracture fragment was first suggested by Lambotte in 1908.[,]

External Fixation

  • External fixation is generally accepted as superior to plaster immobilization in the young patients with an intra-articular comminuted fracture of the distal radius. Other indications for external fixation include some unstable extra-articular fractures with significant comminution and failure to maintain reduction after an initial attempt at closed management in a cast, certain situations of multiple trauma, the presence of dysfunctional contralateral limb, severe open fractures with significant soft tissue injury and neurovascular compromise, and bilateral injuries.[]

Limited Open Reduction

  • In intra-articular fractures that have more than 2 mm of displacement, the radio-carpal joint may be incongruent despite adequate attempts at reduction. The incongruency usually involves the lunate part of the distal end of the radius.
  • The radial styloid process and scaphoid facet are more amenable to reduction through ligamentotaxis or by manipulation and reduction.
  • A new technique of combining external fixation with open reduction of the displaced lunate fossa through a small, longitudinal incision and elevation of the impacted fragment without direct visualization of the surface of the joint has been described.[]

Open Reduction and Internal Fixation

  • One of the recent advances in the treatment of distal radius fractures is the more frequent application of open reduction and internal fixation, especially for intra-articular fractures. There are two groups of fractures for which open reduction and internal fixation is advisable.

Arthroscopic-Assisted Fracture Reduction

  • Intra-articular fractures of the radius can be arthroscopically assessed, and reduction of the articular components and assessment and repair of ligamentous injury can then be undertaken.[,,] The ideal timing for arthroscopically assisted distal radius surgery is 3 to 7 days after injury.

Rehabilitation Guideline for Non-Operative/Conservative rehabilitation by Pho et al[rx]

Acute Stage (0-8 weeks)

Goals

  • Protection with short-arm cast
  • Control pain and edema
  • Maintain range in digits, elbows, shoulder

Interventions

  • AROM and PROM of digits, elbow, shoulder
  • Elevation of hand and digits to control edema
  • Cast removal between 6-8 weeks

Sub Acute Stage

Goal

  • Control pain and edema (TENS, ice)
  • Increase ROM
  • Increase activities of daily living (ADLs)

Interventions

  • AROM and PROM of digits, elbow, shoulder
  • AROM wrist flexion/ extension, forearm supination/ pronation
  • PROM of low load and prolonged stretch

Settled Stage

Goals

  • Regain full ROM
  • Begin strengthening
  • Return to activity

Interventions

  • Continue all ROM exercises
  • Progress to the strengthening of all joints[rx]

Rehabilitation Guideline for External Fixation by Pho et al

Acute Stage (1-6 weeks)

Goals

  • Control pain and edema (TENS, ice)
  • Protect surgical site
  • Maintain ROM of digits, elbow, shoulder

Interventions

  • Elevation
  • AROM of digits, elbow, shoulder
  • AROM forearm supination/ pronation

Sub Acute (7-10 weeks)

Goal

  • Protect fracture site
  • Control pain and edema (TENS, ice)
  • ROM of involved and uninvolved joints

Interventions

  • AROM and PROM of wrist extension/ flexion, radial deviation, and supination/ pronation

Settled Stage (10-16 weeks)

Goal

  • Regain full ROM
  • Begin strengthening
  • Increase tolerance to ADLs

Interventions

  • ROM of wrist flexion/ extension, radial/ ulnar deviation, forearm supination/ pronation progressing to isometric exercises and resisted exercises using dumbbells or resistive bands
  • PROM of low load and prolonged stretching of wrist motions
  • Grip strengthening
  • ADL training within tolerance[rx]

Cryotherapy

  • Cryotherapy is an effective modality for controlling edema in the acute phase after trauma and during rehab due its ability in helping to decrease blood flow through vasoconstriction limiting the amount of fluid escaping from capillaries to the interstitial fluid[rx]. Cryotherapy can also be combined with compression and elevation in the treatment of oedema.[rx]
  • To control pain using cryotherapy, the modality should be applied to the area for 10-15 minutes which can result in pain control up to 2 hours post application.[rx]Precautions for the use of cryotherapy include: over a superficial branch of the nerve, over an open wound, poor sensation or mentation, and very young or very old patients.[rx] Contraindications for cryotherapy include; Acute febrile illness, Vasospasm e.g. Raynaud’s disease, Cryoglobulinemia, Cold urticaria.[rx]

Electrical Stimulation

  • The use of transcutaneous electrical nerve stimulation (TENS) may be used as an adjunct during any phase of rehab to address pain but can be particularly useful for patients that are increasing the level of activity of the wrist. Conventional (high-rate) TENS is useful for disrupting the pain cycle through a prolonged treatment session as great as 24 hours a day.[rx]
  • Low-rate TENS is another form of electrical stimulation that is successful in diminishing pain by targeting motor or nociceptive A-delta nerves. Low-rate TENS has been reported to be effective in pain control for up to 4-5 hours post-treatment.[rx]
  • The literature is still not conclusive on this topic and the results of one study may contradict or, on the contrary, reinforce the results of another study. Yet there is evidence supporting the beneficial effects of electrical stimulation, especially in combination with physiotherapy exercises.

Supervised Active rehabilitation program used in Study

  • ISOMETRIC EXERCISE
    1. Wrist flexors and extensors
  • ACTIVE RANGE OF MOTION EXERCISE
    • Assisted stretch to forearm flexors and extensor musculature and radial/ulnar deviation
    • Weight-bearing wrist extension exercise(hand on the table with the patient leaning forward on them) to patient tolerance
    • Active stretch to shoulder girdle and rotator cuff musculature
    • Active stretch to elbow flexor and extensor musculature
  • INTRINSIC HAND MUSCLE EXERCISE
    • Thumb/digit opposition
    • Repetitive squeezing of theraputty
    • repetitive towel wringing exercise
  • STRENGTHENING ROUTINE
    • Biceps curl with 1,5-2 pound weights bilaterally
    • Shoulder abduction, flexion and extension reps with 2-pound weights bilaterally
    • Repetitive squeezing of a rubber ball in affected wrist
    • Flexion and extension of wrist using 1,5-pound weights increasing as tolerated
  • FUNCTIONAL ACTIVITIES
    • Patient is encouraged to resume pre-accident activities that involve the affected extremity (eg. writing, typing, cooking, etc.)

References

[bg_collapse view=”button-orange” color=”#4a4949″ expand_text=”Show More” collapse_text=”Show Less” ]

[/bg_collapse]

Leave a comment

Your email address will not be published. Required fields are marked *